Artificial Neural Network Based Model for Forecasting Sugar Cane Production
نویسندگان
چکیده
Problem statement: The global need for alternative energy source has necessitated the exploration of vast organic agricultural products with a view of processing them for the production of ethanol in commercial quantity. To ascertain a sustainable production of ethanol from processed sugar cane, a predictive model based on non-linearity nature of its production is imperative. This is due to unavailability of sufficient reliable data and the wide yield fluctuation that was not well dispersed over time. Approach: This study employed heuristic technique to develop an Artificial Neural Network (ANN) model to forecast sugar cane production in Nigeria. The input data set used includes the socioeconomic and agro-climatic factors affecting sugar cane production while the output is the actual sugar cane output for the period covering 1920-2005. Various hidden layers and processing elements were tested giving rise to different Artificial Neural Network (ANN) models. The performance of the ANN models were measured using the Mean Squared Error (MSE), Normalized Mean Squared Error (NMSE), correlation coefficient (r), Akaike’s Information Criterion (AIC) and Minimum Description Length (MDL). The contributions of the inputs to the outputs were determined to know how variation of the input variables affected the output. Results: The 85.70% accuracy result of the best ANN model of 2-hidden layer network of 4 Processing Elements (PEs) indicated the efficacy of Artificial Neural Network in accurate prediction. Conclusion: The developed ANN based model fits well real data and can be used for predicting purpose with a high accuracy.
منابع مشابه
Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملHarvest scheduling algorithm to equalize supplier benefits: A case study from the Thai sugar cane industry
In this study, the harvest scheduling problem of a group of cane growers in Thailand is addressed. Each member in a group is required to consistently supply sugar cane to a mill for the entire harvest season. However, the current scheduling does not account for the time-variant cane production of each cane field, which leads to unequal opportunities for growers to harvest. A portion of growers ...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کامل